Abstract

In this study, a Multi-Objective Genetic Algorithm (MOGA) is utilized to extract interpretable and compact fuzzy rule bases for modeling nonlinear Multi-input Multi-output (MIMO) systems. In the process of non- linear system identication, structure selection, parameter estimation, model performance and model validation are important objectives. Furthermore, se- curing low-level and high-level interpretability requirements of fuzzy models is especially a complicated task in case of modeling nonlinear MIMO systems. Due to these multiple and conicting objectives, MOGA is applied to yield a set of candidates as compact, transparent and valid fuzzy models. Also, MOGA is combined with a powerful search algorithm namely Dierential Evolution (DE). In the proposed algorithm, MOGA performs the task of membership function tuning as well as rule base identication simultaneously while DE is utilized only for linear parameter identication. Practical applicability of the proposed algorithm is examined by two nonlinear system modeling prob- lems used in the literature. The results obtained show the eectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.