Abstract
SummaryAdvances in hardware, software, communication, embedding computing technologies along with their decreasing costs and increasing performance have led to the emergence of the Internet of Things (IoT) paradigm. Today, several billions of Internet‐connected devices are part of the IoT ecosystem. IoT devices have become an integral part of the information and communication technology (ICT) infrastructure that supports many of our daily activities. The security of these IoT devices has been receiving a lot of attention in recent years. Another major recent trend is the amount of data that is being produced every day which has reignited interest in technologies such as machine learning and artificial intelligence. We investigate the potential of machine learning techniques in enhancing the security of IoT devices. We focus on the deployment of supervised, unsupervised learning techniques, and reinforcement learning for both host‐based and network‐based security solutions in the IoT environment. Finally, we discuss some of the challenges of machine learning techniques that need to be addressed in order to effectively implement and deploy them so that they can better protect IoT devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.