Abstract

Many software implementations for the schemes used for public key cryptosystems, of which elliptic curve cryptography is the most powerful, has been concerned with performance and efficiency. However, the advent of side channel attacks with their diverse categories, such as timing, fault and power analysis attacks, impose us to reconsider new strategies in implementing more secured elliptic curve algorithms to thwart any information leakage that leads to break the security of these algorithms. In this paper, we propose a new optimization on the algorithmic level for computing the arithmetic of elliptic curve point over prime fields to countermeasure side channel attacks that threaten elliptic curve cryptosystems. Indeed, these attacks present nowadays a realistic threat to cryptographic applications and have been proved to be very effective against most cryptosystems. To develop a digital signature algorithm that targets performance and security against side channel attacks, we built a library for the underlying prime fields arithmetic for the common fields specialized by NIST and SECG. Our work can be employed in numerous applications such as, E-health, E-banking, E-commerce and E-governance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.