Abstract

A compiler can be correct and yet be insecure. That is, a compiled program may have the same input-output behavior as the original, and yet leak more information. An example is the commonly applied optimization which removes dead (i.e., useless) stores. It is shown that deciding a posteriori whether a new leak has been introduced as a result of eliminating dead stores is difficult: it is PSPACE-hard for finite-state programs and undecidable in general. In contrast, deciding the correctness of dead store removal is in polynomial time. In response to the hardness result, a sound but approximate polynomial-time algorithm for secure dead store elimination is presented and proved correct. Furthermore, it is shown that for several other compiler transformations, security follows from correctness.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.