Abstract

Due to the increasing use of renewable energy sources and the advancement of smart grid technology, bilateral energy transactions between prosumers have attracted significant interest as a potential solution for efficient and decentralized energy distribution. Prosumers can establish direct energy exchanges by utilizing internet of things (IoT) technologies and arrangements with smart metering capabilities, eliminating the need for middlemen and allowing for more effective use of renewable energy sources. However, these direct energy exchanges between prosumers can be susceptible to cyber-threats, which hinder secure and effective energy transactions while protecting privacy. To enable safe and seamless energy transactions among prosumers and the grid, the cyber-security of IoT devices should be of paramount significance as a possible solution. Therefore, this paper focuses on securing the energy transactions among prosumers facilitated by smart meters. It aims to address potential threats against data integrity, confidentiality, and availability from the prosumers’ point of view and develop a comprehensive framework for securing energy transactions based on artificial intelligence (AI). The proposed structured roadmap not only identifies compromised trading data but also prevents prosumers from reacting to it by replacing the contaminated as well as missing trading data. A comparative analysis on AI-based algorithms indicates that decision tree (DT) outperforms support vector machine (SVM) and multi-layer perceptron (MLP) for the proposed framework to profile the corrupted trading data identification and categorization in order to provide effective outcomes. Additionally, the proposed framework adopts a deep learning (DL)-based model for the replacement of compromised trading data. All the numerical analyses, along with extensive simulation results, justify, the efficacy of the proposed framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.