Abstract

There are tremendous security concerns with patient health monitoring sensors in Internet of Things (IoT). The concerns are also realized by recent sophisticated security and privacy attacks, including data breaching, data integrity, and data collusion. Conventional solutions often offer security to patients’ health monitoring data during the communication. However, they often fail to deal with complicated attacks at the time of data conversion into cipher and after the cipher transmission. In this paper, we first study privacy and security concerns with healthcare data acquisition and then transmission. Then, we propose a secure data collection scheme for IoT-based healthcare system named SecureData with the aim to tackle security concerns similar to the above. SecureData scheme is composed of four layers: 1) IoT network sensors/devices; 2) Fog layers; 3) cloud computing layer; and 4) healthcare provider layer. We mainly contribute to the first three layers. For the first two layers, SecureData includes two techniques: 1) light-weight field programmable gate array (FPGA) hardware-based cipher algorithm and 2) secret cipher share algorithm. We study KATAN algorithm and we implement and optimize it on the FPGA hardware platform, while we use the idea of secret cipher sharing technique to protect patients’ data privacy. At the cloud computing layer, we apply a distributed database technique that includes a number of cloud data servers to guarantee patients’ personal data privacy at the cloud computing layer. The performance of SecureData is validated through simulations with FPGA in terms of hardware frequency rate, energy cost, and computation time of all the algorithms and the results show that SecureData can be efficient when applying for protecting security risks in IoT-based healthcare.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.