Abstract

In this paper, we investigate an artificial-noise-aided secure beamforming design for simultaneous wireless information and power transfer in a two-tier downlink heterogeneous cellular network, in which each energy receiver in a femtocell is seen as a potential eavesdropper to wiretap the confidential message intended for the information receiver. Our design objective is to maximize the secrecy rate at the information receiver, while satisfying the signal-to-interference-plus-noise ratio requirement of each macrouser and the energy harvesting and transmit power constraints. Both the scenarios of perfect and imperfect channel state information (CSI) are considered. With perfect CSI, the formulated optimization problem constitutes a difference of a convex function programming problem, which is hard to directly solve. To tackle this challenge, we transform it into a series of semidefinite programs by using successive convex approximation, and an iterative algorithm is proposed to arrive at a provably convergent solution. With imperfect CSI, we address robust secure beamforming relying on the worst-case design philosophy. To circumvent this predicament, we resort to the S-procedure to reformulate the robust quadratic matrix inequality (QMI) constraints and then obtain the linear matrix inequality representations for these QMIs. Numerical results are finally presented to demonstrate the performance of our proposed schemes in improving the secrecy rate of heterogeneous cellular networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.