Abstract

AbstractSupervised descriptive rule discovery techniques like subgroup discovery are quite popular in applications like fraud detection or clinical studies. Compared with other descriptive techniques, like classical support/confidence association rules, subgroup discovery has the advantage that it comes up with only the top-k patterns, and that it makes use of a quality function that avoids patterns uncorrelated with the target. If these techniques are to be applied in privacy-sensitive scenarios involving distributed data, precise guarantees are needed regarding the amount of information leaked during the execution of the data mining. Unfortunately, the adaptation of secure multi-party protocols for classical support/confidence association rule mining to the task of subgroup discovery is impossible for fundamental reasons. The source is the different quality function and the restriction to a fixed number of patterns – i.e. exactly the desired features of subgroup discovery. In this paper, we present a new protocol which allows distributed subgroup discovery while avoiding the disclosure of the individual databases. We analyze the properties of the protocol, describe a prototypical implementation and present experiments that demonstrate the feasibility of the approach.KeywordsAssociation RuleQuality FunctionPrivacy PreserveSubgroup DiscoveryPrivacy Preserve Data MiningThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.