Abstract

Internet of Things (IoT) is a network of all devices that can be accessed through the Internet. These devices can be remotely accessed and controlled using existing network infrastructure, thus allowing a direct integration of computing systems with the physical world. This also reduces human involvement along with improving accuracy and efficiency, resulting in economic benefit. The devices in IoT facilitate the day-to-day life of people. However, the IoT has an enormous threat to security and privacy due to its heterogeneous and dynamic nature. Authentication is one of the most challenging security requirements in the IoT environment, where a user (external party) can directly access information from the devices, provided the mutual authentication between user and devices happens. In this paper, we present a new signature-based authenticated key establishment scheme for the IoT environment. The proposed scheme is tested for security with the help of the widely used Burrows-Abadi–Needham logic, informal security analysis, and also the formal security verification using the broadly accepted automated validation of Internet security protocols and applications tool. The proposed scheme is also implemented using the widely accepted NS2 simulator, and the simulation results demonstrate the practicability of the scheme. Finally, the proposed scheme provides more functionality features, and its computational and communication costs are also comparable with other existing approaches.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.