Abstract
In this Letter, we propose a secure orthogonal frequency division multiplexing (OFDM) transmission scheme based on chaotic encryption and noise-masking key distribution. With the implementation of a three-dimensional digital chaotic system, the security performance is effectively enhanced by scrambling the phase, symbol, and subcarrier frequency of the OFDM signal. The proposed noise-masking key distribution can mask the key information of the chaotic system into noise and transmit it with the chaotic encrypted signal simultaneously. By this mechanism, the legal receiver can realize uninterrupted authentication and decryption even if the key is constantly updated. Transmission of a 62.2-Gb/s quadrature phase shift keying (QPSK) and 124.4-Gb/s 16 quadrature amplitude modulation (16QAM) OFDM signal over a 2-km 7-core fiber using the proposed scheme is experimentally demonstrated. The results show that the proposed scheme can realize security enhancement and cost-effective key distribution without significant bit error ratio (BER) performance degradation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.