Abstract
Wireless Sensor Networks (WSN) has been extensively utilized as a communication model in Internet of Things (IoT). As well, to offer service, numerous IoT based applications need effective transmission over unstable locations. To ensure reliability, prevailing investigations exploit multiple candidate forwarders over geographic opportunistic routing in WSNs. Moreover, these models are affected by crucial denial of service (DoS) attacks, where huge amount of invalid data are delivered intentionally to the receivers to disturb the functionality of WSNs. Here, secure localization based authentication (SLA) is presented to fight against DoS attack, and to fulfil the need of reliability and authentication. By examining state information, SLA projects a trust model to enhance efficacy of data delivery. Indeed, of the prevailing opportunistic protocols, SLA guarantees data integrity by modelling a trust based authentication, providing protection against DoS attackers and diminishing computational costs. Specifically, this model acts as a verification strategy to accelerate? attackers and to handle isolation. This strategy helps SLA in eliminating duplicate transmission and by continuous verification that results from conventional opportunistic routing. Simulation is performed in a MATLAB environment that offers authentic and reliable delivery by consuming approximately 50% of the cost in contrast to other approaches. The anticipated model shows better trade off in comparison to the prevailing ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.