Abstract

We propose and numerically demonstrate a secure key distribution scheme based on the dynamic chaos synchronization of two external cavity vertical-cavity surface-emitting lasers (VCSELs) subject to symmetric random-polarization injections. By exchanging the random parameters that control the polarization angles of the driving injection, Alice and Bob can identify the time slots in which high-quality private chaos synchronization is achieved and independently generate a shared key from the synchronized polarization difference signals of their local VCSELs. The results show that Gb/s key distribution with a low bit error ratio can be achieved, and the shared key can pass all NIST tests, which guarantee the randomness of the key. In the proposed scheme, the exchange messages do not contain any information about the key generation, which affords a high-level of security for key distribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.