Abstract

Information sharing in vehicular networks has great potential for the future Internet of Vehicles (IoV). Vehicles and roadside units (RSUs) can exchange perceptual information and driving experience to enable intelligent transportation applications such as autonomous driving and road condition analysis. However, ensuring secure and efficient information sharing among vehicles is challenging. While traditional blockchain can guarantee the tamper-proof nature of shared information, it cannot be directly applied in large-scale vehicle networks due to its slow consensus process. Therefore, we propose an information sharing approach based on a directed acyclic graph (DAG), in which shared information is encapsulated into sites instead of blocks. We also propose a driving decision-based tip selection algorithm (DDB-TSA) and design a reputation-based rate control strategy (RBRCS) to ensure secure and efficient information sharing. Simulation results show that our approach reduces consensus latency, improves information sharing efficiency, and provides a more secure information sharing environment compared to existing DAG-enabled blockchain systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call