Abstract

In this paper, the secrecy performance of a hybrid satellite-Underwater Optical Communication (UWOC) system in the presence of an Unmanned Aerial Vehicle (UAV) eavesdropper is investigated. The satellite and eavesdropper Radio Frequency (RF) links are respectively subjected to Shadowed-Rician and Nakagami-m fading distributions whereas the UWOC link experiences mixed Exponential-Gamma distribution under difference detection schemes such as heterodyne detection and Intensity Modulation with Direct Detection (IM/DD). Specifically, the equivalent Cumulative Distribution Function (CDF) closed-form expression of the concerned system is then obtained. Based on this, the analytical closed-form expressions of the system Connection Outage Probability (COP), Secrecy Outage Probability (SOP), Strictly Positive Secrecy Capacity (SPSC) and Average Secrecy Capacity (ASC) are derived. By our findings, it is found that the satellite shadowing effect, air bubbles level and temperature gradients and eavesdropper distance significantly have impact on the system secrecy performance. The result also illustrated that the heterodyne detection outperforms the IM/DD under the system and channel conditions. Finally, the accuracy of the analytical expressions is justified through Monte-Carlo simulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.