Abstract

Crowdsourcing plays an essential role in the Internet of Things (IoT) for data collection, where a group of workers is equipped with Internet-connected geolocated devices to collect sensor data for marketing or research purpose. In this article, we consider crowdsourcing these worker's hot travel path. Each worker is required to report his real-time location information, which is sensitive and has to be protected. Encryption-based methods are the most direct way to protect the location, but not suitable for resource-limited devices. Besides, local differential privacy is a strong privacy concept and has been deployed in many software systems. However, the local differential privacy technology needs a large number of participants to ensure the accuracy of the estimation, which is not always the case for crowdsourcing. To solve this problem, we proposed a trie-based iterative statistic method, which combines additive secret sharing and local differential privacy technologies. The proposed method has excellent performance even with a limited number of participants without the need of complex computation. Specifically, the proposed method contains three main components: iterative statistics, adaptive sampling, and secure reporting. We theoretically analyze the effectiveness of the proposed method and perform extensive experiments to show that the proposed method not only provides a strict privacy guarantee, but also significantly improves the performance from the previous existing solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.