Abstract
SummaryIn this paper, the secure group consensus is investigated via periodic event‐triggered output feedback control for nonlinear multi‐agent systems subject to multiple attacks, where replay attacks and denial‐of‐service attacks are considered simultaneously. To avoid uninterrupted communication between agents, a novel fixed/switching continuous‐discrete compensator is first put forward by introducing a discrete‐time triggering mechanism in relative output signals. Then, with the help of the gain control technique, a compensator‐based periodic event‐triggered secure control protocol is established, which includes a triggering mechanism and an output feedback controller that both are discrete‐time. Particularly, Zeno behavior and continuous monitoring of the triggering function are naturally avoided compared with existing event‐triggered control protocols. Further, by combining the Lyapunov‐Krasovskii functional approach with switching topology theory, the secure group consensus is successfully achieved under the designed secure control protocol, meanwhile, the negative effect of multiple attacks on the system is compensated. Finally, two simulation examples are applied to verify the effectiveness of proposed control protocols.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Robust and Nonlinear Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.