Abstract

Non-orthogonal multiple access technology (NOMA), as a potentially promising technology in the 5G/B5G era, suffers from ubiquitous security threats due to the broadcast nature of the wireless medium. In this paper, we focus on artificial-signal-assisted and relay-assisted secure downlink transmission schemes against external eavesdropping in the context of physical layer security, respectively. To characterize the non-cooperative confrontation around the secrecy rate between the legitimate communication party and the eavesdropper, their interactions are modeled as a two-person zero-sum game. The existence of the Nash equilibrium of the proposed game models is proved, and the pure strategy Nash equilibrium and mixed-strategy Nash equilibrium profiles in the two schemes are solved and analyzed, respectively. The numerical simulations are conducted to validate the analytical results, and show that the two schemes improve the secrecy rate and further enhance the physical layer security performance of NOMA systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call