Abstract

With the continuous exploration of genetic research, gradually exposed privacy issues become the bottleneck that limits its development. DNA motif finding is an important study to understand the regulation of gene expression; however, the existing methods generally ignore the potential sensitive information that may be exposed in the process. In this work, we utilize the -differential privacy model to provide provable privacy guarantees which is independent of attackers’ background knowledge. Our method makes use of sample databases to prune the generated candidate motifs to lower the magnitude of added noise. Furthermore, to improve the utility of mining results, a strategy of threshold modification is designed to reduce the propagation and random sampling errors in the mining process. Extensive experiments on actual DNA databases confirm that our approach can privately find DNA motifs with high utility and efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.