Abstract
We investigate the structure of quantizer rules at the local sensors in distributed detection networks, in the presence of eavesdroppers (Eve), under asymptotic regime (number of sensors tending to infinity) for binary hypotheses. These local quantizers are designed in such a way that the confidentiality of sensor data is preserved while achieving optimal detection performance at the fusion center (FC). In the case of Eve with noisier channels, for a general channel model, we show that these optimal quantizer rules at the local sensors are always on the boundaries of the achievable region of sensor's ROC. If there is a constraint on the Eve's performance, based on our numerical results, we conjecture that the structure of an optimal quantizer is LRT-based. The above argument is corroborated with a numerical example using BSC channels for the Eve and ideal channels for the FC. In the case of Eve with better channels, we prove that the quantizer rules that can provide confidentiality along with optimal detection performance, cannot send any useful information to the fusion center (FC). We propose a jamming scheme for the FC against Eve and evaluate the optimal distribution for the Gaussian jamming signal that requires minimum energy to make both FC and Eve's channel similar in distributed detection performance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.