Abstract

With the rapid development of the Internet of Things (IoT), ensuring secure communication between devices has become a crucial challenge. This paper proposes a novel secure communication solution by extracting wireless channel state information (CSI) features from IoT devices to generate a device identity. Due to the instability of the wireless channel, the CSI features are fuzzy and time-varying; thus, we a employ locally sensitive hashing (LSH) algorithm to ensure the stability of the generated identity in a dynamically changing wireless channel environment. Furthermore, zero-knowledge proofs are utilized to guarantee the authenticity and effectiveness of the generated identity. Finally, the identity generated using the aforementioned approach is integrated into an IBE communication scheme, which involves the fuzzy extraction of channel state information from IoT devices, stable identity extraction for fuzzy IoT devices using LSH, and the use of zero-knowledge proofs to ensure the authenticity of the generated identity. This identity is then employed as the identity information in identity-based encryption (IBE), constructing the device’s public key for achieving confidential communication between devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call