Abstract
SummaryThe proposed work introduces two schemes for secure device authentication and key agreement (SDA & KA) mechanisms. Initially, an efficient implicit certificate approach based on the Elliptic curve Qu–Vanstone (EIC‐EcQuV) scheme is developed in the first stage to instantly concur on the session key. The proposed scheme implicitly performs quick authentication of the public key. Also, this scheme prevents the attacker from creating fake key combinations. Through EIC‐EcQuV, the implicit certificate (IC) is distributed which helps to implicitly authenticate the user. This work also proposes ithe developed Public Key Certificateless Cryptosystem (PKCIC) scheme in the second stage, whch was also for the SDA & KA mechanism. In the EIC‐EcQuV scheme, efficient authentication is enabled, but public key theft is possible. However, in the PKCIC scheme, authentication is performed through partial keys, and the public key is secured via the Schnorr signature. The efficiency of the proposed schemes is proved by comparing the attained results with previous schemes. The proposed method obtains the computational cost of 0.0583 s for end‐to‐end devices, 0.06111 for network servers, and 0.00071 s for the gateway, with an execution time of 78.624 for 1000 devices. The attained key agreement of the proposed EIC‐EcQuV is 0.953 s, and PKCIC is 0.9988 s.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Concurrency and Computation: Practice and Experience
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.