Abstract

This paper investigates the sum-secure degrees-of-freedom (SDoF) of three-user multiple-input multiple-output (MIMO) broadcast channel with confidential messages (BCCM) and delayed channel state information at the transmitter (CSIT). Specifically, we obtain non-trivial sum-SDoF upper and lower bounds. Firstly, we derive the sum-SDoF upper bound by means of statistical equivalence property, security constraints, and permutations. Then, for the sum-SDoF lower bound, we leverage the artificial noise transmission and interference re-transmission to design two transmission schemes, which have holistic and sequential higher-order symbol generation, respectively. For these two schemes, we propose the redundancy reduction approach for security analysis, by which the minimal duration of artificial noise transmission phase of the scheme is obtained. To eliminate the redundant equations in security analysis, this approach first identifies the constituent equations, and then analyzes the rank of assemble of them. As a result, both the proposed sum-SDoF upper and lower bounds are tighter than the existing sum-SDoF upper and lower bounds, respectively. Furthermore, the proposed lower bound showcases a three-user coding gain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.