Abstract

Because of recent COVID-19 epidemic, the Internet-of-Medical-Things (IoMT) has acquired a significant impetus to diagnose patients remotely, regulate medical equipment, and track quarantined patients via smart electronic devices installed at the patient's end. Nevertheless, the IoMT confronts various security and privacy issues, such as entity authentication, confidentiality, and integrity of health-related data, among others, rendering this technology vulnerable to different attacks. To address these concerns, a number of security procedures based on traditional cryptographic approaches, such as discrete logarithm and integer factorization problems, have been developed. All of these protocols, however, are vulnerable to quantum attacks. This paper, in this context, presents a data authentication and access control protocol for IoMT systems that can withstand quantum attacks. A comprehensive formal security assessment demonstrates that the proposed algorithm can endure both current and future threats. In terms of data computing, transmission, and key storage overheads, it also surpasses other related techniques.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call