Abstract

Wireless sensor networks (WSNs) are increasingly used in many applications, such as volcano and fire monitoring, urban sensing, and perimeter surveillance. In a large WSN, in-network data aggregation (i.e., combining partial results at intermediate nodes during message routing) significantly reduces the amount of communication overhead and energy consumption. The research community proposed a loss-resilient aggregation framework called synopsis diffusion, which uses duplicate-insensitive algorithms on top of multipath routing schemes to accurately compute aggregates (e.g., predicate count or sum). However, this aggregation framework does not address the problem of false subaggregate values contributed by compromised nodes. This attack may cause large errors in the aggregate computed at the base station, which is the root node in the aggregation hierarchy. In this paper, we make the synopsis diffusion approach secure against the above attack launched by compromised nodes. In particular, we present an algorithm to enable the base station to securely compute predicate count or sum even in the presence of such an attack. Our attack-resilient computation algorithm computes the true aggregate by filtering out the contributions of compromised nodes in the aggregation hierarchy. Extensive analysis and simulation study show that our algorithm outperforms other existing approaches.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.