Abstract

Data aggregation is a key primitive in wireless sensor networks and refers to the process in which the sensed data are processed and aggregated en-route by intermediate sensor nodes. Since sensor nodes are commonly resource constrained, they may be compromised by attackers and instructed to launch various attacks. Despite the rich literature on secure data aggregation, most of the prior work focuses on detecting intermediate nodes from modifying partial aggregation results with two security challenges remaining. First, a compromised sensor node can report arbitrary reading of its own, which is fundamentally difficult to detect but widely considered to have limited impact on the final aggregation result. Second, a compromised sensor node can repeatedly attack the aggregation process to prevent the base station from receiving correct aggregation results, leading to a special form of Denial-of-Service attack. VMAT [1] (published in ICDCS 2011) is a representative secure data aggregation scheme with the capability of pinpointing and revoking compromised sensor nodes, which relies on a secure MIN aggregation scheme and converts other additive aggregation functions such as SUM and COUNT to MIN aggregations. In this paper, we introduce a novel enumeration attack against VMAT to highlight the security vulnerability of a sensor node reporting an arbitrary reading of its own. The enumeration attack allows a single compromised sensor node to significantly inflate the final aggregation result without being detected. As a countermeasure, we also introduce an effective defense against the enumeration attack. Theoretical analysis and simulation studies confirm the severe impact of the enumeration attack and the effectiveness of the countermeasure.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call