Abstract

Regenerating codes enable trading off repair bandwidth for storage in distributed storage systems (DSS). Due to their distributed nature, these systems are intrinsically susceptible to attacks, and they may also be subject to multiple simultaneous node failures. Cooperative regenerating codes allow bandwidth efficient repair of multiple simultaneous node failures. This paper analyzes storage systems that employ cooperative regenerating codes that are robust to (passive) eavesdroppers. The analysis is divided into two parts, studying both minimum bandwidth and minimum storage cooperative regenerating scenarios. First, the secrecy capacity for minimum bandwidth cooperative regenerating codes is characterized. Second, for minimum storage cooperative regenerating codes, a secure file size upper bound and achievability results are provided. These results establish the secrecy capacity for the minimum storage scenario for certain special cases. In all scenarios, the achievability results correspond to exact repair, and secure file size upper bounds are obtained using min-cut analyses over a suitable secrecy graph representation of DSS. The main achievability argument is based on an appropriate precoding of the data to eliminate the information leakage to the eavesdropper.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.