Abstract

Every day, a tremendous amount of image data is generated as a result of recent advances in imaging and computing technology. Several content-based image retrieval (CBIR) approaches have been introduced for searching image collections. These methods, however, involve greater computing and storage resources. Cloud servers can address this issue by offering a large amount of computational power at a low cost. However, cloud servers are not completely trustworthy, and data owners are concerned about the privacy of their personal information. In this research, we propose and implement a secure CBIR (SCBIR) strategy for searching and retrieving cipher text image databases. In the proposed scheme, the extract aggregated feature vectors to represent the related image collection and use a safe Asymmetric Scalar-Product-Preserving Encryption (ASPE) approach to encrypt these vectors while still allowing for similarity computation. To improve search time, all encrypted features are recursively clustered using the k-means method to create a tree index. The results reveal that SCBIR is faster at indexing and retrieving than earlier systems, with superior retrieval precision and scalability. In addition, our paper introduces the watermark to discover any illegal distributions of the images that are received by unlawful data users. Particularly, the cloud server integrates a unique watermark directly into the encrypted images before sending them to the data users. As a result, if an unapproved image copy is revealed, the watermark can be extracted and the unauthorized data users who spread the image can be identified. The performance of the proposed scheme is proved, while its performance is demonstrated through experimental results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call