Abstract

Cloud computing improves utilization and flexibility in allocating computing resources while reducing the infrastructural costs. However, in many cases cloud technology is still proprietary and tainted by security issues rooted in the multi-user and hybrid cloud environment. A lack of secure connectivity in a hybrid cloud environment hinders the adaptation of clouds by scientific communities that require scaling-out of the local infrastructure using publicly available resources for large-scale experiments. In this article, we present a case study of the DII-HEP secure cloud infrastructure and propose an approach to securely scale-out a private cloud deployment to public clouds in order to support hybrid cloud scenarios. A challenge in such scenarios is that cloud vendors may offer varying and possibly incompatible ways to isolate and interconnect virtual machines located in different cloud networks. Our approach is tenant driven in the sense that the tenant provides its connectivity mechanism. We provide a qualitative and quantitative analysis of a number of alternatives to solve this problem. We have chosen one of the standardized alternatives, Host Identity Protocol, for further experimentation in a production system because it supports legacy applications in a topologically-independent and secure way.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.