Abstract

Performing approximate data matching has always been an intriguing problem for both industry and academia. This task becomes even more challenging when the requirement of data privacy rises. In this paper, we propose a novel technique to address the problem of efficient privacy-preserving approximate record linkage. The secure framework we propose consists of two basic components. First, we utilize a secure blocking component based on phonetic algorithms statistically enhanced to improve security. Second, we use a secure matching component where actual approximate matching is performed using a novel private approach of the Levenshtein Distance algorithm. Our goal is to combine the speed of private blocking with the increased accuracy of approximate secure matching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.