Abstract
Resilient manufacturing is a vision in the Industry 5.0 blueprint for satisfying sustainable development goals under pandemics or the rising individualized product needs. A resilient manufacturing strategy based on the Industrial Internet of Things (IIoT) networks plays an essential role in facilitating production and supply chain recovery. IIoT contains confidential data and private information, and many security issues arise through vulnerabilities in the infrastructure. The traditional centralized IIoT framework is not only of high cost for system configuration but also vulnerable to cyber-attacks and single-point failure, which is not suitable for achieving the resilient manufacturing vision in Industry 5.0. Recently, researchers are seeking a secure solution of middleware based on blockchain technology integration for decentralized IIoT, which can effectively protect the consistency, integrity, and availability of IIoT data by utilizing the auditing and tamper-proof features of the blockchain. This paper presented a review of secure blockchain middleware for decentralized IIoT towards Industry 5.0. Firstly, the security issues of conventional IIoT solutions and the advantages of blockchain middleware are analyzed. Secondly, an architecture of secure blockchain middleware for decentralized IIoT is proposed. Finally, enabling technologies, challenges, and future directions are reviewed. The innovation of this paper is to study and discuss the distributed blockchain middleware, investigating its ability to eliminate the risk of a single point of failure via a distributed feature in the context of resilient manufacturing in Industry 5.0 and to solve the security issues from traditional centralized IIoT. Also, the four-layer architecture of blockchain middleware presented based on the IIoT application framework is a novel aspect of this review. It is expected that the paper lays a solid foundation for making IIoT blockchain middleware a new venue for Industry 5.0 research.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.