Abstract
Mobile-edge computing (MEC) has emerged as a new computing paradigm with great potential to alleviate resource limitations attributed to mobile device users (MDUs) by offloading intensive computations to ubiquitous MEC server. However, most of the current offloading policies allow MDUs to transmit their tasks to the same connected small base stations (sBSs), which invariably increases latency and limits performance gain due to overload. Moreover, the security issue mitigating sensitive communication of information is not adequately addressed. Therefore, in this study, in addition to proposing a joint load balancing and computation offloading (CO) technique for MEC systems, we introduce a new security layer to circumvent potential security issues. First, a load balancing algorithm for efficient redistribution of MDUs among sBSs is proposed. In addition, a new advanced encryption standard (AES) cryptographic technique suffused with electrocardiogram (ECG) signal-based encryption and decryption key is presented as a security layer to safeguard the vulnerability of data during the transmission. Furthermore, an integrated model of load balancing, CO and security is formulated as a problem whose goal is to decrease the time and energy demands of the system. Detailed experimental results prove that our model with and without the additional security layers can save about 68.2% and 72.4% of system consumption compared to the local execution.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.