Abstract
AbstractData aggregation in wireless sensor networks is employed to reduce the communication overhead and prolong the network lifetime. However, an adversary may compromise some sensor nodes, and use them to forge false values as the aggregation result. Previous secure data aggregation schemes have tackled this problem from different angles. The goal of those algorithms is to ensure that the Base Station (BS) does not accept any forged aggregation results. But none of them have tried to detect the nodes that inject into the network bogus aggregation results. Moreover, most of them usually have a communication overhead that is (at best) logarithmic per node. In this paper, we propose a secure and energy-efficient data aggregation scheme that can detect the malicious nodes with a constant per node communication overhead. In our solution, all aggregation results are signed with the private keys of the aggregators so that they cannot be altered by others. Nodes on each link additionally use their pairwise shared key for secure communications. Each node receives the aggregation results from its parent (sent by the parent of its parent) and its siblings (via its parent node), and verifies the aggregation result of the parent node. Theoretical analysis on energy consumption and communication overhead accords with our comparison based simulation study over random data aggregation trees.KeywordsSensor NetworkSensor NodeWireless Sensor NetworkIntermediate NodeChild NodeThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.