Abstract

Smart grid has been acknowledged as the next-generation intelligent network that optimizes energy efficiency. Primarily through a bidirectional communication channel, suppliers and users can dynamically adjust power transmission in real time. Nonetheless, many security issues occur with the widespread deployment of smart grid, e.g., centralized register authority and potential Distributed-Denial-of-Service (DDoS) attack. These existing problems threaten the availability of smart grid. In this paper, we mainly focus on solving some identity authentication issues remained in the smart grid. Combined with blockchain, Elliptic Curve Cryptography (ECC), dynamic Join-and-Exit mechanism and batch verification, a reliable and efficient authentication protocol is proposed for smart meters and utility centers. Simultaneously, the provable security of this protocol is assured by the computational hard problem assumptions. Experiment results show that our protocol has achieved security and performance improvement compared with the other ECC related schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.