Abstract

The introduction of mobile edge computing (MEC) technology in unmanned aerial vehicle (UAV) networks can provide computing services for mobile users with or without communication infrastructure coverage. However, mobile users’ privacy may be leaked during the computation offloading process due to the information interaction between UAVs and the migration of computation tasks between mobile users and UAVs. To this end, we propose a secure aerial computing architecture that integrates MEC and blockchain technology for UAV networks to effectively ensure the security and privacy of computation offloading between UAVs and mobile users. Under this architecture, a problem of joint optimization of user association, UAV trajectory, block processor scheduling, and computation resource allocation is formulated to minimize the weighted sum of the energy consumption and the delay in completing computation tasks and blockchain tasks processing. To handle this intractable issue, we first decouple the optimization variables and then separate the original problem into multiple subproblems to be solved alternately. In addition, we design a block coordinate descent (BCD)-based algorithm for user association and computation resource allocation, and a successive convex approximation (SCA)-based algorithm to optimize the trajectories of UAVs. Simulation results show that the proposed algorithm has better performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.