Abstract

AbstractThe altitude of the 0°C isotherm obtained from radiosonde data of the aerological Chilean stations Antofagasta, Quintero/Santo Domingo, Puerto Montt and Punta Arenas are analyzed, along with surface temperature and precipitation records from nearby stations. The strong effect of the 1976/77 climate shift due to a change in the Pacific Decadal Oscillation is evident in the temperature and precipitation data. The data are used as input for an empirical model which reconstructs annually the equilibrium-line altitude (ELA) for the last 49 years on the western side of the southern Andes. The model takes air temperature, precipitation and altitude as the main parameters, and was first developed by Fox (1993) and applied by Condom and others (2007). From the radiosonde data, a significant positive trend of the 0°C isotherm has occurred in the northern, central and southern regions, indicating an ELA rise due to regional warming. General glacier retreat, ice thinning and negative mass balance observed during the past few decades in virtually all the Chilean Andes concur with the observed ELA reconstruction. In the Punta Arenas radiosonde record there is slight evidence for precipitation increase but no evidence for significant warming in the past few decades. This results in a slight lowering of the ELA according to the model reconstruction, which does not agree with the strong and increased glacier retreat observed in recent decades in Patagonia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.