Abstract

We consider the characteristic polynomials of random unitary matrices U drawn from various circular ensembles. In particular, the statistics of the coefficients of these polynomials are studied. The variances of these `secular coefficients' are given explicitly for arbitrary dimension and continued analytically to arbitrary values of the level repulsion exponent . The latter secular coefficients are related to the traces of powers of U by Newton's well known formulae. While the traces tend to have Gaussian distributions and to be statistically independent among one another in the limit as the matrix dimension grows large, the secular coefficients exhibit strong mutual correlations due to Newton's mixing of traces to coefficients. These results might become relevant for current efforts at combining semiclassics and random-matrix theory in quantum treatments of classically chaotic dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.