Abstract

In a planetary system with two or more well-spaced, eccentric, inclined planets, secular interactions may lead to chaos. The innermost planet may gradually become very eccentric and/or inclined, as a result of the secular degrees of freedom drifting towards equipartition of angular momentum deficit. Secular chaos is known to be responsible for the eventual destabilization of Mercury in our own Solar System. Here we focus on systems with three giant planets. We characterize the secular chaos and demonstrate the criterion for it to occur, but leave a detailed understanding of secular chaos to a companion paper (Lithwick & Wu, 2010). After an extended period of eccentricity diffusion, the inner planet's pericentre can approach the star to within a few stellar radii. Strong tidal interactions and ensuing tidal dissipation extracts orbital energy from the planet and pulls it inward, creating a hot Jupiter. In contrast to other proposed channels for the production of hot Jupiters, such a scenario (which we term "secular migration") explains a range of observations: the pile-up of hot Jupiters at 3-day orbital periods, the fact that hot Jupiters are in general less massive than other RV planets, that they may have misaligned inclinations with respect to stellar spin, and that they have few easily detectable companions (but may have giant companions in distant orbits). Secular migration can also explain close-in planets as low in mass as Neptune; and an aborted secular migration can explain the "warm Jupiters" at intermediate distances. In addition, the frequency of hot Jupiters formed via secular migration increases with stellar age. We further suggest that secular chaos may be responsible for the observed eccentricities of giant planets at larger distances, and that these planets could exhibit significant spin-orbit misalignment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.