Abstract

Climate change and associated glacier recession have led to the formation of new glacial lakes and the expansion of existing ones across the Himalayas. Many pose a potential glacial lake outburst flood (GLOF) threat to downstream communities and infrastructure. In this paper, 4418 glacial lakes in the Indian Himalayan Region and 636 transboundary lakes are analyzed. We consider hazard, exposure, and integrated danger levels using robust geographic information system-based automated approaches. The hazard level of lakes was estimated based on the potential for avalanches to strike the lake, size of the lake and its upstream watershed, and distal slope of its dam. Exposure levels were calculated by intersecting cropland, roads, hydropower projects, and the human population with potential GLOF trajectories. Then, GLOF danger was determined as a function of hazard and exposure. The study demonstrates that Jammu and Kashmir (JK) is potentially the most threatened region in terms of total number of very high and high danger lakes (n = 556), followed by Arunachal Pradesh (AP) (n = 388) and Sikkim (SK) (n = 219). Sectorwise, JK faces the greatest GLOF threat to roads and population, whereas the threat to cropland and hydropower is greatest in AP and SK, respectively. Transboundary lakes primarily threaten AP and, to a lesser extent, Himachal Pradesh (HP). For Uttarakhand (UK), the impacts of potential future glacial lakes, expected to form during rapid ongoing glacier recession because of climate change, are explored. Finally, a comparison of current results with previous studies suggests that 13 lakes in SK, 5 in HP, 4 in JK, 2 in UK, and 1 in AP are of highest priority for local investigation and potential risk reduction measures. Current results are of vital importance to policymakers, disaster management authorities, and the scientific community.

Highlights

  • Glacial lakes are highly dynamic water reservoirs (Raj and Kumar 2016; Aggarwal et al 2017) that respond to climate change by expanding in number, size, and volume (Bolch et al 2019)

  • These glacial lake outburst flood (GLOF) trajectories were intersected with the raster layers of the human population, roads, cropland, and hydropower project (HPP)

  • GLOFs are of great concern to mountain communities because of their potential to cause vast damage to infrastructure and human populations in the glacierized basins of the Himalayas, even at large distances downstream from the lakes

Read more

Summary

Introduction

Glacial lakes are highly dynamic water reservoirs (Raj and Kumar 2016; Aggarwal et al 2017) that respond to climate change by expanding in number, size, and volume (Bolch et al 2019). This is evident across the mountains of Asia, including in the Hindu Kush Karakoram Himalayas (HKH), Tien Shan, and Tibet (Ives et al 2010; Bolch et al 2011; Gardelle et al 2011; Nie et al 2013, 2017). These studies applied different methods, decision criteria, and critical thresholds for defining glacial lake outburst flood (GLOF) hazard and risk and are not directly comparable

Objectives
Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.