Abstract
A graph theory based methodology for design of water network partitioning is proposed. Both multiple and single source networks are considered. In the first case the partition refers to the definition of isolated sectors, each of them supplied by its own sources. The shortest paths from each water source to each network node are found and each network node is assigned to be supplied exclusively by the source with the shortest path distance to it. The pipes to be closed are the edge separators of such partition. In the second case the partitioning problem refers to a division of the network in relatively small district metering areas (DMAs) each of them fed by a single pipe. A hierarchical tree for the graph is constructed using a breadth-first search. A recursive approach is applied on this tree to find the design flow rates in each pipe summing the demand of descendant nodes. Based on these flow rates the nodes belonging to each DMA are found. The pipes to be closed are defined as the chords between branches of the hierarchical tree lying below the feeding pipe. The procedure has been tested on a real medium city all-pipe water distribution network model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.