Abstract

It is demonstrated that, at high rigidities (50 GV and beyond), all the main features of cosmic-ray anisotropy of solar origin can be explained in terms of regular particle motion —without diffusion being involved — in the large-scale interplanetary magnetic field (IMF). A simple model of the IMF is adopted with a corotating warped neutral sheet separating the regions of alternative polarities; the warped shape is indispensable for obtaining any form of anisotropy. Energy losses occurring along various computed trajectories are calculated to give the sidereal, solar and antisidereal intensity waves. The reliability of the variations obtained are checked by changing the parameters of the IMF model. Both the sense and amplitude of the polarity-dependent sidereal vector are compatible with those established experimentally. Also reproduced are the predictions of corotation in addition to the 3-hour phase of the semi-diurnal wave. The corotation is found to be near perfect at 50 GV, while it reduces at 100 GV. The model presented accounts for the change of solar daily vector that was observed in 1969.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call