Abstract

Ceramic Matrix Composite (CMC) combustor liners, due to their high temperature capability, enable the elimination of film cooling present in current metallic liners without increasing the pressure drop in the combustor section of a gas turbine engine. The absence of film cooling and the higher temperature capability of the CMC liner leads to complete combustion of carbon monoxide (CO) close to the combustor walls, resulting in a lower emissions combustor. The benefit of lower CO emissions was predicted through the use of stirred reactor network models in which a series/parallel set of individual perfectly stirred reactors (PSRs) is coupled to simulate a combustor. The paper describes the component design and analysis, emissions modeling, fabrication, and sector rig testing of silicon carbide fiber reinforced silicon carbide matrix (SiC/SiC) combustor liners.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.