Abstract

Sciara del Fuoco is the subaerial part of a partially filled sector-collapse scar that extends to 700 m below sea level on Stromboli volcano. The collapse occurred 2200 m and >10 km from the shore to the NNW, a fan-shaped mounded feature comprises debris avalanche deposits (>4 km3) from two or more sector collapses. Volcaniclastic density currents originating from Sciara del Fuoco follow the topographic margin of the debris avalanche deposits, although overbank currents and other unconfined currents widely cover the mounded feature with turbidites. Historical (recorded) eruptive activity in Sciara del Fuoco is considerably less than that which occurred earlier, and much of the partial fill may have formed from eruptions soon after the sector collapse. It is possible that a mass of eruptive products similar to that in the collapse scar is dispersed as volcanogenic sediment in deep water of the Tyrhennian basin. Evidence that the early post-collapse eruptive discharge was greater than the apparent recent flux (≈2kg/s) counters suggestions that a substantial part of Stromboli's growth has been endogenous. The partial fill of Sciaria del Fuoco is dominated by lava and spatter layers, rather than by the scoria and ash layers classically regarded as main constituents of Strombolian (‘cinder’) cones. Much of the volcanic slope beneath the vents is steeper than the angle of repose of loose tephra, which is therefore rapidly transported to the sea. Delicate pyroclasts that record the magmatic explosivity are selectively destroyed and diluted during sedimentary transport, mainly in avalanches and by shoreline wave reworking, and thus the submarine deposits do not record well the extent and diversity of explosive activity and associated clast-forming processes. Considerable amounts of dense (non-vesicular) fine sand and silt grains are produced by breakage and rounding of fragments of lava and agglutinate. The submarine extension of the collapse scar, and the continuing topographic depression to >2200 m below sea level, are zones of considerable by-passing of fine sand and silt, which are transported in turbidity currents. Evidently, volcanogenic sediments dispersed around island volcanoes by density currents are unlikely to record well the true spectrum and relative importance of clast-forming processes that occurred during an eruption. Marine sedimentary evidence of magmatic explosivity is particularly susceptible to partial or complete obliteration, unless there is a high rate of discharge of pyroclastic material into the sea.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call