Abstract
The sectional nonassociativity of a metrized (not necessarily associative or unital) algebra is defined analogously to the sectional curvature of a pseudo-Riemannian metric, with the associator in place of the Levi-Civita covariant derivative. For commutative real algebras nonnegative sectional nonassociativity is usually called the Norton inequality, while a sharp upper bound on the sectional nonassociativity of the Jordan algebra of Hermitian matrices over a real Hurwitz algebra is closely related to the Böttcher–Wenzel-Chern-do Carmo-Kobayashi inequality. These and other basic examples are explained, and there are described some consequences of bounds on sectional nonassociativity for commutative algebras. A technical point of interest is that the results work over the octonions as well as the associative Hurwitz algebras.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.