Abstract

The hypoxic microenvironment is well-characterized in hepatocellular carcinoma (HCC). Delineation of hypoxia-responsive events is an integral part to understand the pathogenesis of HCC. We studied the functional role and clinical relevance of Stanniocalcin 1 (STC1), a hypoxia-induced molecular target, in HCC. In our clinical cohort, STC1 transcript was up-regulated in HCC tumor tissues. Moreover, STC1 protein was detected in the sera of HCC patients. A higher serum STC1 level was correlated with larger tumor size and poorer 5-year disease-free survival. Functionally, recombinant STC1 protein (rhSTC1) promoted cell migration and cell invasion in vitro; and the effect was abolished by co-treatment of anti-STC1 neutralizing antibody. By in vivo mouse model, silencing of STC1 in HCC cells downregulated secretory STC1 level and suppressed lung metastasis. Furthermore, we found that rhSTC1 activated the JNK pathway, as evidenced by altered expression of the key molecular targets pJNK and p-c-Jun. The functional effects conferred by rhSTC1 were abrogated by co-treatment of JNK inhibitor. In summary, secretory STC1 enhances metastatic potential of HCC via JNK signaling. It potentially serves as a prognostic serum biomarker and a therapeutic target for HCC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.