Abstract

AbstractPrevious studies of epithelial nervous systems have focused on the neuronal elements, but generally neglected the origin of neuro–glial interactions. In this study, we use a polyclonal antiserum directed against Reissner's substance to label non‐neuronal bipolar cells in the ectoneural part of the radial nerve cord in the sea star Asterias rubens. Ultrastructural results show secretory activity in these bipolar cells. Immunolabelled material is released into the extracellular matrix in the hyaline layer as well as in the region of the basal end‐feet. As a first step towards characterising the antigen, a specific protein band of 36 kD was demonstrated with immunoprecipitation. Cells of this type: (1) traverse the epithelium to full extent from the outer surface to the basal lamina; (2) carry a single apical cilium; (3) contain conspicuous bundles of intermediate filament; (4) produce a secretion which is, at least in part, homologous to the Reissner's substance which is produced by a primitive radial glia cell type in chordates. It is concluded that the bipolar cells in the ectoneural part of the surface epithelium of the sea star Asterias rubens are secretory radial glia, which evidently have a common origin to the radial glia which secretes Reissner's substance in chordates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call