Abstract

In previous studies, we have shown that reactive oxygen species (ROS)-mediated inflammatory signaling is essential for microglial proinflammatory responses to Mycobacterium tuberculosis (Mtb). To further investigate the molecular mechanisms governing these processes, we sought to describe the role of phospholipase A(2) (PLA(2)) in Mtb-induced ROS generation and inflammatory mediator release by microglia. Inhibition of secretory PLA(2) (sPLA(2)), but not cytosolic PLA(2) (cPLA(2)), profoundly abrogated Mtb-mediated ROS release, the generation of various inflammatory mediators (tumor necrosis factor, interleukin-6, cyclooxygenase-2, inducible nitric oxide synthase, and matrix metalloproteinase-2 and -9), and the activation of nuclear factor (NF)-kappaB and MAPKs (ERK1/2, p38, and JNK/SAPK) by murine microglial BV-2 cells or primary mixed glial cells. Interruption of the Ras/Raf-1/MEK1/ERK1/2 pathway abolished Mtb-induced sPLA(2) activity, whereas the blockage of JNK/SAPK or p38 activity had no effect. Specific inhibition of sPLA(2), but not cPLA(2), suppressed the upregulation of ERK1/2 phosphorylation by Mtb stimulation, suggesting the existence of a mutual dependency between the ERK1/2 and sPLA(2) pathways. Moreover, examination of the protein kinase C (PKC) family revealed that classical PKCs are involved in Mtb-induced sPLA(2) activation by microglia. Taken together, our results demonstrate for the first time that sPLA(2), either through pathways comprising Ras/Raf-1/MEK1/ERK1/2 or the classical PKC family, plays an essential role in Mtb-mediated ROS generation and inflammatory mediator release by microglial cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call