Abstract

Development of the secretory cavity and formation of the subcuticular wall of glandular trichomes in Cannabis sativa L. was examined by transmission electron microscopy. The secretory cavity originated at the wall‐cuticle interface in the peripheral wall of the discoid secretory cells. During the presecretory phase in development of the glandular trichome, the peripheral wall of the disc cells became laminated into a dense inner zone adjacent to the plasma membrane and a less dense outer zone subjacent to the cuticle. Loosening of wall matrix in the outer zone initiated a secretory cavity among fibrous wall materials. Membrane‐bound hyaline areas, compressed in shape, arose in the wall matrix. They appeared first in the outer and subsequently in the inner zone of the wall. The membrane of the vesicles, and associated dense particles attached to the membrane, arose from the wall matrix. Hyaline areas, often with a conspicuous electron‐dense content, were released into the secretory cavity where they formed rounded secretory vesicles. Fibrous wall material released from the surface of the disc cells became distributed throughout the secretory cavity among the numerous secretory vesicles. This wall material was incorporated into the developing subcuticular wall that increased five‐fold in thickness during enlargement of the secretory cavity. The presence of a subcuticular wall in the cavity of Cannabis trichomes, as contrasted to the absence of this wall in described trichomes of other plants, supports a polyphyletic interpretation of the evolution of the secretory cavity in glandular trichomes among angiosperms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.