Abstract

The secretome from hypoxia-preconditioned mesenchymal stem cells (MSCs) has been shown to promote resolution of inflammation and alleviate acute lung injury (ALI) through its immunomodulatory function. However, the effects of consecutive hypoxic culture on immunomodulatory function of the MSCs secretome are largely unclarified. Here, we intend to investigate the effects of consecutive hypoxia on therapeutic efficacy of conditioned medium derived from MSCs (MSCs-CM) in alleviating ALI. Human umbilical cord-derived MSCs (UC-MSCs) were consecutively cultured in 21% O2 (Nor-MSCs) or in 1% O2 (Hypo-MSCs) from passage 0. Their conditioned medium (Nor-CM and Hypo-CM respectively) was collected and administered into ALI models. Our findings confirmed that Hypo-MSCs exhibited increased proliferation ability and decreased cell senescence compared with Nor-MSCs. Consecutive hypoxia promoted UC-MSCs to secrete immunomodulatory cytokines, such as insulin-like growth factor 1(IGF1), IL10, TNFα-stimulated gene 6(TSG6), TGFβ, and prostaglandin E2 (PGE2). Both Nor-CM and Hypo-CM could effectively limit lung inflammation, promote efferocytosis and modulate anti-inflammatory polarization of lung macrophages in ALI models. Moreover, the effects of Hypo-CM were more potent than Nor-CM. Taken together, our findings indicate that consecutive hypoxic cultures could not only promote both proliferation and quality of UC-MSCs, but also enhance the therapeutic efficacy of their secretome in mitigating lung inflammation by promoting efferocytosis and anti-inflammatory polarization of macrophages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.