Abstract

In vitro folliculogenesis could be a new technology to produce mature oocytes from immature follicles that have been isolated from cryopreserved or fresh ovarian tissue. This technique could also be a tool for evaluation of oocyte quality and/or for determination of follicular parameters during follicular growth. Our objective was to characterize in mice the secretion profiles of follicles that had been isolated mechanically during in vitro follicular growth and in relation to the growth curve. Early preantral follicles from fresh prepubertal and adult mouse ovaries or frozen-thawed prepubertal mouse ovaries were cultured individually in microdrops under oil for 12 days. Each day, two perpendicular diameters of the follicles were measured. From day-3 to day-12 of culture, culture medium was collected and preserved for determination of inhibin B, anti-Müllerian hormone (AMH) and estradiol levels. At the end of the culture, after maturation, the status of the oocyte was evaluated. Follicular growth and their individual hormone production did not always correlate. Inhibin B was never secreted from follicles of less than 200 μm diameter, whether the follicles were examined when fresh or after freezing-thawing. Estradiol secretion was never observed in frozen-thawed follicles. AMH was mainly secreted between day-3 and day-9. Despite similar morphological aspects at the start of culture, follicles selected for in vitro folliculogenesis were found to be heterogeneous and differed in their ability to grow and to produce hormones, even if they had similar growth curves. Follicles from frozen-thawed ovaries developed slowly and produced fewer hormones than freshly collected follicles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.