Abstract

A fusion of DNA sequences encoding the SPO2 promoter, the alpha-amylase signal sequence from Bacillus amyloliquefaciens, and the mature part of the alpha-galactosidase from Cyamopsis tetragonoloba (guar) was constructed on a Bacillus subtilis multicopy vector. Bacillus cells of the protease-deficient strain DB104 harboring this vector produced and secreted the plant enzyme alpha-galactosidase up to levels of 1,700 U/liter. A growth medium suppressing the residual proteolytic activity of strain DB104 was used to reach these levels in a fermentor. Purification of the secreted product followed by NH2-terminal amino acid sequencing showed that the alpha-amylase signal sequence had been processed correctly. The molecular mass of the product estimated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis was slightly lower than that of the plant purified enzyme, which is most likely due to glycosylation of the latter. The alpha-galactosidase product was active both on the artificial substrate para-nitrophenyl-alpha-D-galactopyranoside and on the galactomannan substrate, guar gum. The activity of this Bacillus sp.-produced enzyme was similar to that of the glycosylated enzyme purified from guar seeds, indicating that glycosylation has no essential function for enzyme activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call